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A quantum algorithm is presented for modeling the time evolution of a contin-
uous field governed by the nonlinear Burgers equation in one spatial dimension.
It is a microscopic-scale algorithm for a type-II quantum computer, a large
lattice of small quantum computers interconnected in nearest neighbor fashion
by classical communication channels. A formula for quantum state preparation
is presented. The unitary evolution is governed by a conservative quantum gate
applied to each node of the lattice independently. Following each quantum gate
operation, ensemble measurements over independent microscopic realizations
are made resulting in a finite-difference Boltzmann equation at the mesoscopic
scale. The measured values are then used to re-prepare the quantum state and
one time step is completed. The procedure of state preparation, quantum gate
application, and ensemble measurement is continued ad infinitum. The Burgers
equation is derived as an effective field theory governing the behavior of the
quantum computer at its macroscopic scale where both the lattice cell size and
the time step interval become infinitesimal. A numerical simulation of shock
formation is carried out and agrees with the exact analytical solution.

KEY WORDS: Quantum lattice gas; type-II quantum computer; Burgers
equation.

1. INTRODUCTION

This paper presents a quantum algorithm for modeling the nonlinear
Burgers equation. This represents a strong numerical test of the modeling



utility of quantum computers because the Burgers equation is a difficult
nonlinear partial differential equation to accurately model without numer-
ical instabilities. Its applications to turbulence, intermittency, structures in
a self-gravitating medium (1) and shock formation in inelastic gases (2) gives
the Burgers equation unique importance in the field of computational
physics. One of the goals of this paper is to place the question of modeling
the Burgers equation into the emerging field of quantum computational
physics.
The quantum algorithm presented here is suited to a type-II quantum

computing architecture that is a large array of small quantum computers
interconnected by classical communication channels. (3) The quantum algo-
rithm is based on the factorized quantum lattice-gas method, which has
been previously applied to modeling the Navier–Stokes equations of fluid
dynamics (4, 5) and the diffusion equation. (6)

Other types of quantum lattice gases appear in the literature, beginning
in the mid 1990’s, by Succi,(7, 8) Bialynicki-Birula,(9)Meyer,(10, 11) and Boghosian
and Taylor (12) to model the relativistic Dirac equation and the nonrela-
tivisitic Schroedinger equation, and Yepez (13) to model phase-coherent
quantum systems. In contrast, the mesoscopic scale behavior of the fac-
torized quantum lattice gas presented here is purely classical in nature,
even though the microscopic scale dynamics is quantum mechanical. This is
because measurements are made on each qubit of the quantum computer
after each and every application of a local quantum mechanical program
independently applied on each site or node of the system. The usefulness
of this approach is that practical and efficient computation can by carried
out at the mesoscopic scale by an emergent finite-difference Boltzmann
transport equation to model a broad class of effective field theories in
an unconditionally stable manner. The measurement process in effect
‘‘factorizes’’ the collision term in the lattice-Boltzmann equation so that
quantum superpositions and entanglement cannot spread throughout the
quantum computer. This keeps quantum superposition and entanglement
localized within the lattice nodes for a short duration of time less than the
spin–spin decoherence time of the physical system in question.3 In this way,

3Nuclear spins precess at a frequency of w=geB
mc about the externally applied magnetic field B.

They can precess in phase with each other only for a characteristic time called the spin–spin
decoherence time and usually denoted by T2. Moreover, the relaxation time usually denoted T1,
which is greater than T2, is the characteristic time required for the spins to relax back to the
energy eigenstates of the two-level spin-system, where these two eigenstates are populated
according to the Boltzmann equilibrium occupancy probabilities.

the measurement process mitigates against any uncontrolled decoherence
mechanisms that would otherwise destroy the phase coherence of the
quantum computer’s wavefunction.
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The dynamical evolution of the type-II quantum computer can be
described at three spacetime scales, the microscopic, mesoscopic, and
macroscopic scales. At the microscopic scale, all the quantum dynamics
occurs on a discrete spatial lattice. The Hamiltonian of the quantum system
is an artificial one; that is, it is produced by a program of externally applied
controls. In effect the naturally occurring quantum system is coaxed to
act like another quantum system on a discrete lattice with a Hamiltonian
of our choosing. One can then describe the dynamical behavior of the
‘‘programmed’’ quantum system at a mesoscopic scale. To do this, an
ensemble measurement over identical microscopic realizations is made to
determine the occupancy of the two-level energy eigenstates of each qubit
in the system. A scaling estimate for the minimum required ensemble size
is given in Appendix A. In this way a discrete field of probabilities is
obtained, one probability per qubit. At this mesoscopic scale, the occupancy
probabilities are defined only on the lattice points, so these probabilities
constitute a discrete field of real-valued quantities. A lattice Boltzmann
equation for kinetic transport exactly governs the dynamical evolution of
this spatially discrete probability field.
Finally, to bridge the gap to the macroscopic scale, the occupancy

probabilities at each site of the lattice are summed together to determine
what is called a number density field. As the number of lattice points
increases towards an infinite spatial resolution, which is called the conti-
nuum limit, the number density field becomes a continuous and differen-
tiable field. Its dynamical evolution can then be approximately described,
to any order of desired precision, by a partial differential equation of
motion. Since this equation of motion is chosen by construction, for
example say it is the Burgers equation, we consider the type-II quantum
computer to be a model of the physical system described by that equation
of motion. In this sense, the microscopic quantum mechanical system is
programmed to act like one particular classical physical system at its
macroscopic scale. Therefore, in essence, we exploit quantum mechanics for
the purpose of efficient analog computation.
The quantum algorithm presented here is the simplest example of

using a quantum computer to solve a one-dimensional nonlinear partial
differential equation. To do this, only two qubits are needed at each node
of the type-II quantum computer and a single quantum gate is simulta-
neously and independently applied to all the nodes. In general, to solve
nonlinear partial differential equations in two and three-dimensional, more
than two qubits per node is required. The minimum number of qubits
required for various nonlinear systems, including the Burgers equation, in
two and three-dimensions is presently unknown. Furthermore, to correctly
and accurately model complex three-dimensional dynamical systems to
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handle the nonlinear motions of singular boundaries, such as arise in shock
fronts, phase and species interfaces, and the like, many hundreds or thou-
sands of bits may be required per site.4 Since the number of particle con-

4 It is possible to estimate the number of qubits required per node based on the bit density of
classical lattice-gas models since they are a special case of quantum lattice-gas models. For
the Navier–Stokes equation, 6 and 24 bits are needed in two and three-dimensions, respec-
tively, in single speed models of incompressible subsonic flow. (14, 15) To repair anomalies, such
as a lack of Galilean invariance, many additional bits are needed to encode the occupancy of
a particle and this causes the bit density to be multiplied. (16) If many-speed models are con-
sidered for compressible subsonic flow, the required number bits per node are doubled or
tripled. (17) To handle compressible transonic and supersonic flows, many additional bits are
necessary to handle the large distance advections of local flows. (18) Furthermore, to handle
multiphase fluids, additional bits are required to communicate long-range inter-particle
forces. (19) An efficient implementation of a multiphase fluid requires doubling the bit density
as a hydrodynamic lattice-gas model is generalized to a multiphase hydrodynamic model.
That is, for every bit in the original model encoding a particle’s occupancy, an additional
messenger bit is added to handle the long-range force that acts on that particle. (20) The bit
density also doubles as one adds another species, as is done in models of immiscible fluids
and microemulsions (21) or reactive systems. (22)

figurations grows exponentially in the number of on-site bits, implementing
the collision process on a classical computer quickly becomes intractable
for complicated models.
A speedup due to quantum parallelism is a salient characteristic of a

type-II quantum computer despite the periodic measurement process. This
speedup occurs even though the quantum mechanical superposition of
states is restricted to only a sub-manifold of the full Hilbert space. With a
type-II quantum computer, in principle, it is possible to gain a speedup
because the computational work required to implement the collision
process is order unity in certain cases. This is possible because the Hamil-
tonian (say an Ising spin system with nearest neighbor interaction) govern-
ing the evolution of a node conserves certain quantities, such as the total
magnetization along an external applied uniform magnetic field. In the
quantum lattice-gas model presented in this paper, the total magnetization
is mapped on to a field quantity that is governed by the Burgers equation
in the continuum limit. Therefore, once the appropriate quantum state
preparation is completed on each node of the type-II quantum computer,
only one unitary transformation step is needed before the quantum state of
each qubit is measured. By refocusing two-spin interactions in a nuclear
magnetic resonance quantum computer, (23) the collision process can there-
fore be efficiently computed. Other conserved quantities of the on-site
Hamiltonian may be mapped to recover the macroscopic-scale evolution of
additional field quantities. For example, the square of the total spin may be
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mapped on a conserved local momentum vector to recover nonlinear
hydrodynamic flow.

2. FACTORIZED QUANTUM LATTICE-GAS ALGORITHM

2.1. Step 1: Computational Memory State Encoding

Consider a one-dimensional lattice with L sites. Each site of the lattice
is labeled by a coordinate xl, where l=1,..., L. To model the Burgers
equation, we use two qubits physically located at each site of the lattice.
Note that in this case of only two qubits per node, an exponential speedup
of the algorithm implemented on a type-II quantum computer versus a
classical computer would not be realized. (6) To realize the exponential
speedup, many more than two qubit per node is required. Therefore, this
quantum algorithm is simply a test case, and to exploit quantum efficiency
one must consider a generalized two or three-dimensional version of the
algorithm presented here.
With two qubits per node, there are a total 2L qubits in the type-II

quantum computer. These qubits are denoted by the ket |qa(xl, tp)P, where
a=1, 2. The computational memory state of the type-II quantum computer
is encoded in the quantum wave function, |Y(x1, x2,..., xL, tp)P, in a par-
ticular fashion described here. First of all, it is important to note that the
quantum wave function of a type-II quantum computer is always expres-
sible in tensor product form

|Y(x1, x2,..., xL, tp)P=ë
L

l=1
|k(xl, tp)P (1)

The ket |k(xl, tp)P is called the on-site ket. In general, with b qubits per
node, the computational manifold is L2b-dimensional, which is a small
faction of the full 2Lb-dimensional Hilbert space when the number of lattice
sites L is large. In our present case with b=2 qubits per site, the computa-
tional manifold is of size L22. Each on-site ket resides in a 22-dimensional
subspace of the computational manifold.
Let us choose the following four basis states in the number represen-

tation

|00P=R
0
0
0
1

S |01P=R
0
0
1
0

S |10P=R
0
1
0
0

S |11P=R
1
0
0
0

S (2)
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In this basis, the number operators for the occupancy of qubits |q1P and
|q2P are respectively represented by the following two matrices

n̂1=R
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

S n̂2=R
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

S (3)

We are now in a position to say how the computational memory state of
the type-II quantum computer is encoded in |Y(x1, x2,..., xL, tp)P. This is
specified by a list of 2L probabilities, one probability value for each qubit.
Each probability value is supposed to be a continuous real numbered
quantity in the range of 0 to 1. In practice however, each probability value
can only be approximately represented within the dynamical range physi-
cally allowable by the technique used to embody a qubit, for example using
the spin state of an atomic nucleus (24, 25) or the state of a fluxon that entered
a superconducting quantum interference device through a Josephson junc-
tion. (26, 27)5 The probability value encoded in each qubit is called the occu-

5 The issue of the achievable dynamical range of physical qubits for encoding probabilities is
under study in our laboratory and by our collaborators for the two different cases of type-II
quantum computers employing either the nuclear magnetic resonance or superconducting
electronics approaches.

pancy probability and it is denoted by fa(xl, tp) for the ath qubit at site xl
at time tp.
Each qubit initially encodes the occupancy probability according to

the following prescription

|qa(xl, tp)P=`fa(xl, tp) |1P+`1−fa(xl, tp) |0P (4)

for l=1, 2,..., L and a=1, 2. Equation (4) represents the first step of the
quantum lattice-gas algorithm.6 This is called state preparation and defines

6Note that in general the quantum state of a qubit is determined by three real parameters, an
overall phase factor, plus two ‘‘Euler’’ angles specifying its orientation on the unit Bloch
sphere, |qP=e ij(cos h |1P+e ie sin h |0P). In our case, the overall phase factor, j, and the
internal phase factor, e, are not used and we simply set fa=cos2 h.

the way we write data to the type-II quantum computer’s memory. Since
initially each on-site ket is a tensor product over the qubits at the site,
|kP=|q1P é |q2P, the on-site ket therefore has the following four compo-
nents in our chosen basis
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|k(xl, tp)P=`f1(xl, tp) f2(xl, tp) |11P+`f1(xl, tp)(1−f2(xl, tp)) |10P

+`(1−f1(xl, tp)) f2(xl, tp) |01P

+`(1−f1(xl, tp))(1−f2(xl, tp)) |00P (5)

In this construction of the on-site ket, the qubits are considered to be dis-
tinquishable.7

7 In the case where the on-site qubits are indistinguishable and fermionic in character, then
one must keep track of the the ‘‘internal’’ location of the individual qubits within each node
to ensure that the on-kit is antisymmetric. In our present case with two qubits per node, say
the qubits are located at the internal locations y1 and y2. Then, the on-site ket would be
intialized as |kP=[|q1P(y1) é |q2(y2)P−|q1(y2)P é |q2(y1)P]/`2. In the general case, with
more than two qubits per node, a Slater determinant would be used to determine the signs of
all the terms contributing to the antisymmetric on-site ket.

The ‘‘number density’’ field is defined as the sum of the occupancy
probabilities

r(xl, tp) — f1(xl, tp)+f2(xl, tp) (6)

The number density field is a spatially discrete field in that it has a value
only on the discrete sites of a lattice. However, we may consider the
number density field to be a continuous and differentiable field in the con-
tinuum limit where the number of lattice sites becomes infinite, LQ. for
a lattice of fixed size. The best justification for this consideration comes
directly from numerical simulations of the number density field. It is pos-
sible to numerically measure the convergence property of a predicted
numerical behavior of the model by comparing it with the exact analytical
solution of the partial differential equation the system is supposed to
model. (6) As the grid resolution is doubled again and again, it has been
observed that the quantum lattice-gas model converges with better than
second order accuracy in space and first order accuracy in time to the exact
solution. (6) In fact, in a phase-coherent for model of the many-body
Schroedinger wave equation, the quantum lattice-gas method is fourth
order accurate in space. (28) This high degree of accuracy is not typical of
time-explicit dynamical models where the field values at some time step are
computed with only knowledge of the field values at the previous time step.
The reason for the high-degree of accuracy arises from the fact that the
collision process in a unitary one and the resulting mesoscopic kinetic
transport equations obey the principle of detailed-balance.
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2.2. Step 2: Unitary Quantum Evolution

It is necessary to make a clear distinction between the actual micro-
scopic scale evolution of the type-II quantum computer, which is governed
by unitary quantum mechanical evolution, and the effective mesoscopic
scale evolution of the type-II quantum computer system, which is non-
unitary. The unitary quantum mechanical evolution is determined by a
program of externally applied controls (for example, a sequence radio-
frequency pulses in the case of an NMR-based quantum computer) so that
the phase-coherent part of the evolution is governed by a quantum wave
equation of a particularly chosen form

|kŒ(xl, tp)P=Û |k(xl, tp)P (7)

The chosen unitary evolution matrix, Û, is called the collision operator and
it is applied to each lattice site independently causing local quantum
superposition and entanglement of the on-site qubits. In general, Û is
decomposable into a sequence of two-qubit quantum gates. (29) Application
of the collision operator, homogeneously and independently across all the
lattice sites, is the second step of the quantum lattice-gas algorithm. In
practice, the time taken to run the collision operator program must be on
the order of the T2 spin–spin decoherence time of the physical system in
questions. In the case of the nuclear magnetic resonance type-II quantum
computer, T2 is on the order of 1 second. The choice of the particular
components of Û determines the form of the partial differential equation
the quantum lattice-gas can model as shall be demonstrated in Section 5. In
the context of (7) viewed as a collisional scattering process, the ket |kP is
called the incoming ket and the ket |kŒP is called the outgoing ket.

2.3. Step 3: Measurement

The third step of the quantum lattice-gas algorithm is to measure (that
is, to ‘‘read’’) all the occupancy probabilities. This measurement process is
a non-unitary action that destroys all the superpositions and entanglements
that may have been caused locally at each site of the lattice by application
of Û. Mathematically, we can express the occupation probabilities in terms
of the following matrix element of the number operator

f −a(xl, tp)=OkŒ(xl, tp)| n̂a |kŒ(xl, tp)P (8)

for a=1, 2. The updated values of the occupation probabilities, f −a, as
indicated by the prime superscript, are determined by either repeated mea-
surement or by a single measurement over a statistical ensemble, or both.
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2.4. Step 4: Global Data Shifts Using Classical Communication

Channels

The fourth step of the quantum lattice-gas algorithm is to shift all the
occupancy probability data obtained from the measurement process to
their neighboring sites as follows

fa(xl, t1)=f
−

a(xl+ea , tp) (9)

where e1=1 and e2=−1. Notice that after this step, we consider time to
be incremented by one unit y=t1−tp This step requires only classical
communication between neighboring nodes and is traditionally called par-
ticle streaming in the literature on classical lattice-gas dynamics. (14, 15)

The final step, which loops back to the first step of the quantum lattice-
gas algorithm, is to reprepare (that is, to ‘‘write’’ once again) the quantum
state of the computer according to the prescription (4). Then, we have the
updated value of each qubit expressed in terms of the updated values of the
occupation probabilities

|q −a(xl, tp)P=`f
−

a(xl+ea , tp) |1P+`1−f
−

a(xl+ea , tp) |0P (10)

Setting the updated value of each qubit equal to the value of the qubit at
the later time incremented by one unit, |q(xl, t1)P — |qŒ(xl, tp)P, this final
step of the algorithm is equivalently expressed as

|qa(xl, t1)P=`fa(xl, t1) |1P+`1−fa(xl, t1) |0P (11)

As just mentioned, this is identical to the first step of the algorithm given
in (4), except that |qaP is evaluated at the incremented time. In this way, we
can continue to iterate forward in time, indefinitely, and make a time-
history recording of the occupation probabilities encoded in all the |qaP,
which in turn, gives us the temporal evolution of the number density field.
According to the quantum algorithmic four-step procedure, the

superposition of states spreads within a lattice cell size a=||xl−xl+ea ||
entangling only on-site qubits and persists for a duration not greater than
update time y=t1−tp. In practice, in the simplest implementation of the
algorithm, this unit of time y is on the order of the T1 spin relaxation time
of the physical system in questions because this is the time interval needed
before state reparation can begin. In the case of the nuclear magnetic
resonance type-II quantum computer, T1 is on the order of 10 seconds. If
T1 ± T2, this imposes an inefficiency on the type-II quantum computer
architecture since much time would be expended waiting for the system to
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relax back to equilibrium, during which time no useful computation is
performed. There are two ways to resolve this inefficiency. First, one can
use physical systems were T1 is greater but on the order of T2. Second, if
T1 ± T2, which is applicable to the NMR case, a ‘‘reverse’’ program could
be run to ‘‘quickly’’ force the system to return back to equilibrium. This
second solution would only be practical if the original program for the
collision operator, the measurement step, and the reverse program, could
all be accomplished within a single T2 time period.

3. QUANTUM LATTICE-BOLTZMANN EQUATION

All the algorithmic steps described in the previous section can be
encapsulated mathematically in a single finite-difference equation which
combines the collision and streaming operations as well as the measure-
ment process, expressed as a matrix element, as follows

fa(xl+ea , tn+1)=fa(xl, tn)+Ok(xl, tn)| Û†n̂aÛ− n̂a |k(xl, tn)P (12)

for l=1, 2,..., L, for n=0, 1, 2,..., and for a=1, 2. This finite-difference
equation is called the quantum lattice-Boltzmann equation. It is an exact
representation of the factorized quantum lattice-gas dynamics at the meso-
scopic scale. The collision term, the last term on the right hand side of (12),
can be simplified and written explicitly in terms of the occupation proba-
bilities fa. To model the Burgers equation, we choose a collision operator
that conserves the total on-site occupancy, also refered to as the particle
number in the literature on lattice gases. That is, of the four basis states
enumerated in (2), the collision operator may entangle the first and second
qubits at each site by causing a superposition of the states |01P and |10P.
Therefore, a general representation of the collision operator is a block
diagonal matrix, a single U(2) quantum gate

Û=R
1 0 0 0
0 e ife it cos h e ife iz sin h 0
0 −e ife−iz sin h e ife−it cos h 0
0 0 0 ±1

S (13)

Note that the plus or minus sign of the last component of unitary collision
matrix accounts for whether or not the on-site qubits are bosonic (+1) or
fermionic (−1) in character, (13) but otherwise has no bearing on the result-
ing kinetic transport equations. Substituting (3) and (13) into (12) gives us
explicit update rules for the probability occupancies
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f −1=f1f2+||e
it cos h`f1(1−f2)+e iz sin h`(1−f1) f2 ||2 (14)

f −2=f1f2+||−e
−iz sin h`f1(1−f2)+e−it cos h`(1−f1) f2 ||2 (15)

where the double vertical bars denote the norm or absolute value of the
enclosed quantity. After some algebraic manipulation, this pair of equa-
tions can be reduced to the standard form

f −a=fa+Wa (16)

where the collision term, Wa, is

Wa=−sin2 h[fa(1−fa+1)−(1−fa) fa+1]

+sin 2h cos(z−t)`fa(1−fa) fa+1(1−fa+1) (17)

for a=1, 2. Note that in (17) we use the convention that the subscript of
the occupation probability is taken modulo 2; that is, fa=fmod2(a). The
quantum lattice-Boltzmann equation expressed in (16) has the traditional
form of a kinetic lattice-Boltzmann equation often used in the literature on
the classical lattice gases. However, as seen in (17), other than the depen-
dence of the Euler angles, there appears an unusual dependence on the
square root of the occupation probabilities. This type of additional term is
a consequence of the microscopic scale quantum nature of the model that
remains clearly evident at the mesoscopic scale where (17) is well-defined,
even though our quantum algorithm requires periodic and homogenous
measurement of all qubits in the computer. In fact, it is just this term that
will give rise to non-linearity in the macroscopic equation of motion and
that will allow us to model the Burgers equation as we shall demonstrate in
Section 5.

4. LOCAL EQUILIBRIUM

Before we derive an effective field theory for the macroscopic scale
behavior of our factorized quantum lattice-gas system, it is first necessary
to establish the form of the local equilibrium occupancy probabilities, feqa .
By definition, we know that the collision term (17) must vanish at local
equilibrium. For convenience, let us denote the equilibrium occupancy
probabilities by d1 — f

eq
1 and d2 — f

eq
2 . Then the equilibrium condition

Wa=0 is equivalent to

sin2 h[d1(1−d2)−(1−d1) d2]=sin 2h cos(z−t)`d1(1−d1) d2(1−d2)
(18)
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This may be rewritten in what may be called detailed-balance form by dividing
the left and right hand sides of the above equation by d1(1−d1) d2(1−d2)
giving

d1
1−d1

−
d2
1−d2

=2 cot h cos(z−t)= d1
1−d1

d2
1−d2

(19)

Our basic approach is that the equilibrium occupancy probabilities can be
parameterized in the following way

d1=
1

ebE1+1
and d2=

1
ebE2+1

(20)

Letting bE+ln c — bE1 and E− ln c — bE2, we can write

d1=
1

cebE+1
and d2=

1
1
c e
bE+1

(21)

Expressed in terms of E and c, the equilibrium condition (19) then becomes

1
c
e−bE− ce−bE=2 cot h cos(z−t) e−bE (22)

which simplifies to the following quadratic equation

c2+2 cot h cos(z−t) c−1=0 (23)

We take the positive root for our solution so that d1 and d2 in turn are
positive

c=`cot2 h cos2(z−t)+1− cot h cos(z−t) (24)

For convenience, let us label the trigonometric factor a — cot h cos(z−t).
Then we have

c=`a2+1+a and
1
c
=`a2+1−a (25)

Now the equilibrium number density r=d1+d2 gives us the following
relation between r, c, and the fugacity ebE

r=
1

cebE+1
+

1
1
c e
bE+1

(26)
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After some algebraic manipulation, this can be rewritten as a quadratic
equation in the fugacity

re2bE+1c+1
c
2(r−1) ebE+r−2=0 (27)

The solutions are

ebE=
1
2
1c+1

c
2 1−r
r
±
1
r
=1
4
1c+1

c
22 (1−2r+r2)−r2+2r (28)

Now from (25) we see that (c+1c)=2`a
2+1. Taking the positive root of

(28), we then have

ebE=
1−r
r
`a2+1+

1
r
`(a2+1)(1−2r+r2)−r2+2r (29)

We had to take the positive root to be consistent with the classical case
where the only possible collision term is Wa=−fa(1−fa+1)+(1−fa) fa+1,
which is deterministic. The classical collision term corresponds to the case
in the quantum lattice-gas model (17) where a=0. In the classical case, the
occupation probabilities must be equal, so r=2d= 2

ebE+1
, which in turn

means that ebE=1−r
r +

1
r . This is consistent with expression (29).

Given the solution (29), we in turn may express the equilibrium prob-
ability of occupancies in terms of the number density. That is, substituting
(29) into (21), and after performing some algebraic reduction, we have

d1=
r

2
+
1
2a
`a2+1−

1
2a
`(a2+1)−2a2r+a2r2

d2=
r

2
−
1
2a
`a2+1+

1
2a
`(a2+1)−2a2r+a2r2

(30)

Therefore, in the quantum lattice-gas model, the equilibrium occupancy
probabilities are not equal, except for the two trivial cases where the
number density is either completely empty r=0 or completely full r=2.
This characteristic of non-equal occupations, while satisfying a detail-
balance condition (19), is a characteristic unique to quantum lattice-gas
models. This is not possible with any kind of classical lattice-gas model
with strictly local interactions.
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5. THE BURGERS EQUATION

We can explicitly rewrite the mesoscopic transport equation (16) as

f −1=f1 cos
2 h+f2 sin2 h+sin 2h cos(z−t)`f1(1−f1) f2(1−f2)

f −2=f1 sin
2 h+f2 cos2 h− sin 2h cos(z−t)`f1(1−f1) f2(1−f2)

(31)

where for brevity the dependence on xl and tn of each occupancy probabil-
ity is omitted. Using these strictly local transport equations, we can derive
an effective field theory that accurately and precisely describes the dyna-
mical behavior of our quantum lattice-gas model at the macroscopic scale.
We begin our derivation with the simplest case where deviation of the

quantum occupancy probabilities are close to the classical value feqa 4 r

2 ,
for a=1, 2. From the equilibrium solutions (30), we see that the system
approaches the classical regime when the trigonometric factor a is small.
To calculate a finite-difference expression for the number density, we must
express the number density field at the new incremented time tn+1

r(xl, tn+1)=f1(xl, tn+1)|f1 4
r

2
+f2(xl, tn+1)|f2 4

r

2
(32)

in terms of the number density field evaluated at the previous time tn. This
can be accomplished by substituting the equilibrium values into (31) to give
us

f −1(xl, tn)=
r(xl, tn)
2
+sin 2h cos(z−t)

r(xl, tn)
2
11−r(xl, tn)

2
2

f −2(xl, tn)=
r(xl, tn)
2

− sin 2h cos(z−t)
r(xl, tn)
2
11−r(xl, tn)

2
2

(33)

Using the streaming rule (9), we can rewrite these two update equation as

f1(xl, tn+1)=
r(xl+1, tn)
2

+sin 2h cos(z−t)
r(xl+1, tn)
2
11−r(xl+1, tn)

2
2

f2(xl, tn+1)=
r(xl−1, tn)
2

− sin 2h cos(z−t)
r(xl−1, tn)
2
11−r(xl−1, tn)

2
2

(34)

Now substituting these expressions into (32), after some algebraic simplifi-
cations we have the following governing nonlinear finite-difference equation
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r(xl, tn+1)−r(xl, tn)=
1
2 [r(xl+1, tn)−2r(xl, tn)+r(xl−1, tn)]

+12 sin 2h cos(z−t)[r(xl+1, tn)−r(xl−1, tn)]

− 14 sin 2h cos(z−t)[r(xl+1, tn)
2−r(xl−1, tn)2]

(35)

where r(xl, tn) has been substracted from both the left and right hand
sides. Note that (35) embodies an explicit numerical scheme because all the
terms on the R.H.S. depend only on tn.
In the continuum limit where the lattice spacing and the update time

both approach zero, the number density field becomes continuous and dif-
ferentiable. Then the L.H.S. of the governing difference equation becomes
the first partial derivative with respect to time, the first term on the R.H.S.
becomes one-half the second partial derivative of the number density filed
with respect to space, and the second term on the R.H.S. becomes propor-
tional to the first partial derivative with respect to space. The last term on
the R.H.S. is a bit more difficult to interpret by inspection in the con-
tinuum limit, but nevertheless is straightforward to evaluate. We use the
expansion r(x±dx)2 4 r(x)2±2r(x) “r(x)

“x dx+[
“r(x)
“x ]

2 dx2 to evaluate this
last term, and then it follows that the governing difference equation (35)
approximates the following nonlinear partial differential equation in the
continuum limit

“r(x, t)
“t

+c sin 2h cos(z−t)[r(x, t)−1]
“r(x, t)
“x

=
1
2
a

y

“
2r(x, t)
“x2

(36)

This is the nonlinear Burgers equation.

6. NUMERICAL SIMULATION

If we choose the ‘‘Euler’’ angles in (13) to be f=0, h=p

4 , t=z, then
the general collision operator reduces the quantum gate

Û=R
1 0 0 0

0
1

`2

1

`2
0

0 −
1

`2

1

`2
0

0 0 0 ±1

S (37)
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Fig. 1. A plot of the occupancy probabilities of the two on-site qubits versus the number
density at that site. The upper curve is feq1 and the lower curve is f

eq
2 as specified by (38). In a

quantum lattice gas, the occupancy probabilities can be different while the system nevertheless
obeys a detailed-balance condition. The abscissa and ordinate are both non-dimensional
probability values.

In this particular case, the equilibrium occupations are

feqa =
r

2
+
ea
`2
51−=1−1r

2
211−r

2
26 (38)

and are plotted in Fig. 1. The mesoscopic transport equation (16) reduces
to the simpler form

f −1=f1−
1
2 [f1(1−f2)−(1−f1) f2]+`f1(1−f1) f2(1−f2)

f −2=f2+
1
2 [f1(1−f2)−(1−f1) f2]−`f1(1−f1) f2(1−f2)

(39)

and macroscopic equation of motion (36) reduces to the following para-
bolic partial differential equation

“r

“t
+c
“

“x
1r−r

2

2
2=a

2

2y
“
2r

“x2
(40)

Setting u — c(r−1), we then have the Burgers equation in standard form

“u
“t
−u
“u
“x
=n
“
2u
“x2

(41)

where n=a
2

2y is the transport coefficient.
8

8 It is possible to add an external noise term into the right-hand side of the Burgers equation
(41) of the form “g(x, t)

“x . We define the potential field h(x, t) as follows:
“h(x, t)
“x — u(x, t). Then

h(x, t) satisfies the Kardar–Parisi–Zhang equation. (30)
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To test the prediction that the macroscopic scale behavior of the
quantum lattice-gas model is governed by the Burgers equation (41), one
may compare the results of the numerical simulation to an exact solution
obtained by analytical means. In a different context, this type of compari-
son was done by Boghosian and Levermore in 1987 when they tested the
accuracy and efficiency of their classical lattice-gas model of the Burgers
equation. (31) The presentation in this section follows their numerical test
procedure. For the purposes of the numerical test, the system is simulated
directly at the mesoscopic scale using (39), and initialized with a sinusoidal
profile in the number density field

r(xl, 0)=ra cos 1
2pl
L
2+rb (42)

where ra=0.4 and rb=1, and L=256. A time history of the dynamical
evolution of the the number density field is plotted in blue in Fig. 2.
An analytical solution of the Burgers equation can be obtained by

application of the Cole–Hopf transformation

r=ra+
2n
ck
“k

“x
(43)

where

k — I0(z)+2 C
.

a=1
(−1)Floor[a/2] Ia(z) fa(2pax+nat) e−mat (44)

and where z — crb
4pn , ma — n(2pa)

2, na — c(ra−1)(2pa), the Ia’s are modified
Bessel functions, and the function fa denotes the sine or cosine function
when a is odd or even, respectively,

fa(x) —
(−1)a+1
2

cos(x)−
(−1)a−1
2

sin(x) (45)

To match the numerical simulation, the parameters in the analytical solu-
tion (44) were set to c=L=256 and n=1

2 . The agreement between the
numerical prediction and the analytical solution is excellent, as shown in
Fig. 2. There is a slight discrepancy between the two results after the shock
front has fully developed in the number density field. The discrepancy
occurs at the corners or edges of the shock. The analytical solution appears
to be smoother across the shock front than the numerical solution. To plot
the analytical solution, it was not possible to include all terms in the series
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Fig. 2. Development of a shock front in the number density field after the system was ini-
tialized with a sinusoidal profile on a L=256 site lattice. Agreement between the numerical
data (solid curve) and the analytical solution (dashed) curve is apparent. However, the analyt-
ical solution appears to depart from the numerical solution at later times when a steep shock
front is fully formed. The edges of the analytical solution are smooth compared to the sharp
edges of the numerical simulation.
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expansion (44) from a=1 up to a=.. Instead, an accurate approximation
was made where the first 80 terms in the expansion (44) were used. The
numerical error incurred by truncating the expansion in this way is less
than the round-off error of the least significant bit of a double-precision
floating-point representation, and therefore does not account for the
observed discrepancy at the edges of the shock front.

7. CONCLUSION

This paper presented a factorized quantum lattice-gas algorithm for
modeling the nonlinear Burgers equation. The quantum algorithm was
developed for direct implementation on a type-II quantum computer and
is primarily intended for that purpose. All algorithmic steps were enu-
merated. A derivation of the mesoscopic scale transport equation, a quantum
lattice-Boltzmann equation, was presented, as was a derivation of the
macroscopic scale effective field theory governing the number density field.
A general parabolic and nonlinear partial differential equation, in the form
of the Burgers equation, was the predicted governing equation of motion.
The results of a numerical simulation of the model were then presented
along with a comparison to the exact analytical solutions for the problem
of shock formation given an initial sinusoid profile in the number density
field. The agreement of the analytical predictions to the numerically pre-
dicted solutions was excellent confirming the analytically derived effective
theory is indeed the correct one.
The efficiency of the factorized quantum lattice-gas algorithm is signi-

ficantly better than its classical lattice-gas algorithm counterpart when
judged strictly on classical numerical modeling grounds and when both
algorithms are implemented on the same general purpose computer (such
as a desktop personal computer).9 The classical lattice-gas algorithm for

9 The finite-difference lattice-Boltzmann equation (39) is suited to standard general purpose
computers with floating-point arithmetic processors, a computational resource not needed by
the classical lattice-gas algorithm, so the claim for improved computational efficiency of the
lattice-Boltzmann method over the classical lattice-gas method could be made stronger.
Using special-purpose hardware such as the CAM-8 machine, (32) with a total cost of all its
simple components no more costly than the components in a conventional personal compu-
ter, it is possible to speed up the execution of classical lattice-gas models by several orders of
magnitude. Yet even this degree of speedup does not give a competitive advantage to
hydrodynamic classical lattice-gas algorithms (of which the Burgers equation is a special
case) running on special purpose hardware. (33) However, it has been demonstrated that the
lattice-Boltzmann method is a competitive computational fluid dynamics solver, for example,
when compared with the spectral method. (34)

the Burgers equation was one of the first classical lattice-gas algorithms ever
presented (31) that was carefully tested against an exact analytical solution
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to the partial differential equation the lattice-gas system was supposed to
model. In the case of the classical lattice-gas model, significant compu-
tational resources were expended to observe shock formation. That is, to
obtain reasonably accurate mesoscopic data in the classical lattice-gas
model, course-grain averaging over blocks of size 512 lattice sites was
required. The entire lattice size for the classical lattice-gas model required a
rather large simulation space of 65536 sites, and the characteristic time for
shock formation was on the order of 218=262144 time steps. In contrast,
the quantum lattice-gas model reproduced a cleaner approximation of the
dynamical formation of the shock using a small lattice of only 256 sites in
less than 256 time steps. This substantial reduction in required computa-
tional resources was possible because the mesoscopic transport equations
could be accurately modeled directly on a classical computer in a numeri-
cally unconditionally stable fashion that obeyed the principle of detailed-
balance.
It is possible to apply the quantum lattice-gas algorithmic method to

multidimensional situations. In two and three dimensions, it is possible to
recover the nonlinear convective term associated with the Burgers equation.
However, in this situation, there also appears a pressure term, so the
resulting macroscopic partial differential equation is the Navier–Stokes
equations. If an inter-particle potential is applied (by using non-local colli-
sions), in principle it would be possible to cancel the gradient pressure term
and therefore recover the Burgers equation in two or three dimensions. It is
presently an open question as to whether or not it is possible to recover the
Burgers equation in two or three dimensions by using only local particle
collisions.

APPENDIX A: SCALING ESTIMATE FOR THE MINIMUM

ENSEMBLE SIZE

We can estimate the minimum number of repeated measurements that
are required to evaluate the occupancy probabilities to a sufficient preci-
sion for the quantum lattice-gas to accurately model turbulent hydrody-
namic flow. The argument begins with the following principle: there is
equivalence between ensemble averaging over independent replicas and
coarse-grain block averaging over space. In an NMR quantum computer
implementation of a type-II quantum computer, one would use ensemble
averaging to evaluate the occupation probabilities and not coarse-grain
averaging. However, we know that the total number of nodes, n, needed in
a single coarse-grain block scales as n ’ Re1/2

M2
, where Re is the Reynolds

number and M is the Mach number. (33) By the equivalence principle, we
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will therefore require n replicas to comprise our ensemble. The total
number of cells, L3, needed to resolve a three-dimensional turbulent eddy
down to the dissipation scale goes as L3 ’ Re

9
4. (33) Therefore, the minimum

size of the ensemble can be expressed as n ’ L2/3

M2
. For a turbulent simulation

with a Reynolds number of a million, then the ensemble size should be
much greater than about 105, given a small Mach number of about one
tenth. This is not too large of an ensemble size to make the type-II
quantum computation impractical. Furthermore, simulating the Navier–
Stokes equation in its turbulence regime is more difficult than simulating
shock formation governed by the Burgers equation.
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